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Abstract. Using a finite-size scaling method combined with extensive Monte Carlo measurements
of high statistics, we calculate the four-, six- and eight-point renormalized coupling constants
defined at zero momentum in the symmetric phase of the three-dimensional Ising system. The
results of the 2D Ising system that are directly measured are also reported. Our value of the four-
point coupling constant for the 3D system agrees very well with the available estimates from other
methods. Our values of the six- and eight-point coupling constants are significantly different from
those obtained by other methods for the 3D system, although they agree reasonably well in the 2D
system.

1. Introduction

The Hamiltonian of the Ising ferromagnet is given by

H = −
∑
〈i,j〉

SiSj (1)

where the Ising spin at site i, Si , can take either 1 or −1 and the sum is over all the nearest
neighbours of the lattice. It is well known that the critical behaviour of the D-dimensional
Ising model can be described by the D-dimensional Euclidean scalar field theory in which the
Hamiltonian is given by

H =
∫

dDx

[
1

2
(∇φ(x))2 +

1

2
m2

0φ(x)
2 +

g0

4!
φ(x)4

]
(2)

where m0 and g0 are respectively the bare mass and the coupling constant defined in the
absence of critical fluctuations of the fields. Near the criticality m0 is a linear measure of
temperature, and we denote by m0c the value at the critical point. As the fluctuations become
strong, renormalizations of the mass, coupling constant and fields are necessary, and the long-
distance behaviour is no longer described by the bare potential but by the effective potential
which is generally of more complicated functional form than the bare one. In statistical physics
the effective potential represents the free-energy density as a function of order parameter
(expectation value of the renormalized field) and is used to determine the equation of state.

After small-renormalized-field expansion of the effective potential, its coefficients are
directly related to the renormalized coupling constants (RCCs) defined at zero momentum. In
terms of the expectation value of the renormalized field, ϕR , the effective potential in the 3D
symmetric phase may be written as

Veff(ϕR) = 1

2
m2

Rϕ
2
R +

1

4!
mRg

(4)
R ϕ4

R +
1

6!
g
(6)
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R +
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R

mR

ϕ8
R + · · · (3)

0305-4470/00/142675+10$30.00 © 2000 IOP Publishing Ltd 2675



2676 Jae-Kwon Kim

where mR and g
(2N)
R represent respectively the renormalized mass (inverse correlation length

ξ ) and the (dimensionless) 2N -point RCC defined at zero momentum.
The formal expression of g(2N)

R can be obtained by calculating the 2N th derivative of
the effective potential with respect to the average value of the renormalized field. Necessary
elements for the calculations are the well known relations

dVeff

dϕ
= J ϕ = 1

V

dW [J ]

dJ
and ϕ = Z1/2

ϕ ϕR. (4)

Here ϕ, V , W , and Zϕ are respectively the expectation value of the bare field φ, the volume
of the system, the generating functional for connected Green functions in the presence of the
external field J , and the field strength renormalization factor given by Zϕ = χm2

R with χ

denoting magnetic susceptibility. The expressions in 3D are

g
(4)
R = −(Z2

ϕ/mR)W
−4
2 W4 (5)

g
(6)
R = −Z3

ϕW
−6
2 [W6 − 10W 2

4W
−1
2 ] (6)

g
(8)
R = −mRZ

4
ϕW

−8
2 × [W8 − 56W6W4W

−1
2 + 280W 3

4W
−2
2 ] (7)

whereWN is the Fourier transformedN -point connected Green function at zero momentum. In
2D, since ϕR is dimensionless, the expressions for the g(2N)

R values are given by equations (5)–
(7) with additional division of the m2

R term in the right-hand sides of them.
In statistical physics, the effective potential is used to determine the equation of state, that

is, the induced magnetization as a function of external field through the first of equations (4).
In this sense the role of higher-order RCCs becomes important for increasing values of the
magnetization. Each RCC has a universal non-zero finite value as the theory becomes critical,
provided the hyperscaling relation holds. An RCC can also be expressed as a combination of
dimensionless amplitude ratios which is again universal, e.g., g(6)R = (g

(4)
R )2(10−R−1

0 )withR0

denoting the universal sixth-order ratio [1]. An accurate determination of a universal quantity
is generally important in statistical physics because it characterizes a universality class. In
other words, the value of an RCC is supposed to be the same for any class of theories having
the same symmetry and dimension. In computing an RCC we take thermodynamic limit first
and then take the limit of the thermodynamic correlation length becoming divergent (that is,
the limit m0 → m0c). The corresponding value in this limit may be termed as critical RCC.
The determination of the accurate value of the critical four-point RCC (g̃(4)R ) is particularly
important since all other universal quantities can be given in terms of it.

In this work we are concerned with the Monte Carlo calculation of the critical RCCs
in the symmetric phase of the two- and three-dimensional Ising model. (From here on the
notation of RCC will be used without the subscript R when it is used in context of size
dependence.) This has been a subject of many studies, including a variety of quantum field
theoretic approaches [2–7], high-temperature series expansions [8–10], exact renormalization
group flow techniques [11–13], and Monte Carlo simulations [14–16]. It is known from the
previous Monte Carlo simulation based on the Metropolis algorithm that standard direct Monte
Carlo measurements of the thermodynamic critical RCCs of higher order (N � 3) suffer from
an enormous statistical noise [14]. We are not aware of any previous Monte Carlo studies on the
higher-order RCCs of the 2D Ising model in the symmetric phase although there are some very
recent results available from field-theoretic approaches [6,7]. Another Monte Carlo study for
the 3D Ising model is based on finding the probability distribution of the order parameter in the
external field at various temperatures [15]. We employ a finite-size scaling (FSS) extrapolation
scheme [17, 18] combined with a single-cluster-flipping Monte Carlo algorithm [19].

Preliminary Monte Carlo results for the 3D Ising model were reported in [20], which
showed significant differences in the estimates of g(6)R and g

(8)
R from those obtained by other
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methods. The reason for the discrepancy must be clarified since any employed methods do not
appear to be completely free of unambiguity in computing higher-order RCCs. This motivated
us to carry out very extensive and thorough Monte Carlo simulations. We also tried to find a
possible source of errors in the Monte Carlo simulation: (i) by increasing the precision of the
Monte Carlo simulation, (ii) by extending our Monte Carlo measurements of RCCs to the 2D
Ising model, and (iii) by including in our analysis the effect of the correction to scaling.

(i) is helpful for a precise check of the validity of the finite size scaling for the RCCs and
(ii) helps in detecting a possible systematic error in our measurements of RCC by comparing
those with available exact results at criticality. One way to determine the effect of correction
to scaling is to check the correction of FSS by measurements of the RCCs at criticality, which
are included in this study for both the 2D and 3D Ising models.

We observe that our Monte Carlo data are highly self-consistent among themselves and
that an involvement of any systematic errors in our Monte Carlo measurements is unlikely
to happen. This study essentially confirms the results in [20] for the 3D Ising model, while
showing substantial agreement with those from other methods for the 2D Ising model.

2. The Monte Carlo method

For the calculations of the RCC one needs to calculate ξ , χ , and W2N . With periodic boundary
conditions imposed on the lattice, χ and W2N can be expressed in terms of the expectation
values of various powers of the sum of the spin over all the lattice site S ≡ ∑

i Si . For example,

χ = 〈S2〉/LD W4 = (〈S4〉 − 3〈S2〉2)/LD (8)

where L is the linear size of the lattice. The ξ can be very accurately determined using the
standard second moment formula†. The cluster algorithms [19] of the Monte Carlo simulation
have been extremely efficient for many problems of critical phenomena. It is now a relatively
easy task to obtain Monte Carlo data of typical physical quantities such as χ and ξ with relative
statistical errors less than 0.5% at a temperature arbitrarily close to criticality. It nevertheless
turns out that an accurate Monte Carlo measurement of a higher-order RCC is problematic in
some cases. The problem arises basically from the fact that a RCC of higher order is given
as a multiplication of a huge number with a tiny one. The former is given typically by some
power of L

ξL
, for instance, ( L

ξL
)9 for the g(8)R of the 3D system, whereas the latter comes from

the combination of the W2N that turns out to be extremely sensitive to statistical noises. The
noises increase rapidly with increasing temperature and increasing value of L

ξL
.

As an illustration we measured various physical quantities at an arbitrary (inverse)
temperature in the scaling regime of the 2D Ising model with increasing linear size of the lattice
L. Table 1 clearly shows that the statistical error in the measured values of g(2N)

R increases with
N for any given value of L. In the case of L = 80, for example, the relative statistical errors
of ξL, χL, g(4)L , g(6)L , g(8)L are 0.08, 0.1, 0.7, 3.1, 5.3%, respectively. We observe that all the
variables possibly except for g(8)L are monotonically increasing functions of L up to L = 80
where L

ξL
� 6.7. The values do not vary with further increasing L within the statistical errors.

We recall that the well known exact thermodynamic value of ξ at this β is 11.9055 . . . , which
manifests itself atL = 80 already within the statistical errors. The size-independent value thus
corresponds to the thermodynamic value. It is also very clear that the size-dependence becomes
rapidly weaker with increasing L for all the variables considered here. This is expected to be
the case for any physical variable that has a well-defined thermodynamic value. For the g(8)L ,
however, owing to the large statistical noises it is hard to draw a definite conclusion on the

† See, for example, [18].
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Table 1. Size dependence of various physical quantities at β = 0.420 up to L = 100 for the 2D
Ising system.

L ξL χL g
(4)
L g

(6)
L g

(8)
L

20 9.664(8) 116.1(1) 6.29(1) 218.46(1.32) 17 871(140)
30 10.977(9) 162.5(1) 8.95(1) 414.8 (2.3) 43 532(313)
40 11.53(1) 186.5(2) 11.26(1) 615.1(4.0) 71 443(615)
50 11.78(1) 197.4(2) 12.83(3) 740.2(5.5) 85 462(879)
60 11.84(1) 201.3(2) 13.79(4) 794.8(6.2) 87 919(1185)
70 11.88(1) 203.1(2) 14.20(6) 825.1(10.0) 89 824(2315)
80 11.91(1) 203.9(2) 14.77(10) 850.4(26.1) 89 521(4765)
90 11.91(2) 204.3(2) 14.85(12) 858.8(24.2) 90 722(7451)

100 11.90(2) 204.4(3) 14.60(16) 846(38) 88 165(9575)

size dependence. Nevertheless, it is very natural to expect that g(8)L would follow a similar size
dependence as g(4)L and g

(6)
L .

To compute the critical RCC it is required to obtain thermodynamic values as β → βc.
For the case of the 2D Ising model we will not follow that procedure. Instead, we will report
the results of measurements at the critical point and try to find out the possible effect of the
correction to scaling. The illustration in the case of the 2D Ising model turns out to be useful
in connection with the study of the 3D case. Note that the relation in the scaling regime

g
(2N)
R (t) ∼ tDν−2�2N+γ (9)

translates into

g
(2N)
L (t = 0) ∼ L(Dν−2�2N+γ )/ν (10)

at criticality. Hence the hyperscaling relation Dν − 2�2N + γ = 0 implies the invariance of
g
(2N)
L (t = 0) with respect to L. Conversely, from the (weak) dependence of g(2N)

L (t = 0) one
can sometimes infer the correction to scaling in the scaling regime. Computing the RCC by
taking the limit t → 0 first and then taking the limit L → ∞ is equivalent to the computation
of g(2N)

L (t = 0). It should be stressed that g(2N)
L (t = 0) basically represents the opposite of

thermodynamic limit (that is, measurements under the condition L/ξL � 1) and has nothing
to do with the lower-bound of critical RCC [21].

We also report the sixth- and eighth-order cumulant ratios at criticality that are denoted by
U

(6)
L and U

(8)
L , respectively. These are part of W6 and W8 and have already been available for

the 2D Ising model based on the umbrella sampling method of the Monte Carlo simulation [22].
Since our code is generic in dimension, the comparison with the result from a different Monte
Carlo method for these higher-order cumulant ratios that have severe statistical noises may
be useful to check against any unexpected possible systematic errors in our Monte Carlo
measurements of RCCs. For example, U(8)

L is expressed as

U
(8)
L = (〈S8〉 − 28〈S6〉〈S2〉 − 35〈S4〉2 + 420〈S4〉〈S2〉2 − 630〈S2〉4)/〈S2〉4. (11)

The results are summerized in table 2. Our results of U
(2N)
L for N = 2, 3, and 4 are

respectively 1.8318(5), 13.93(1), and −226.0(1), which may be compared with 1.834, 13.96,
and −226.6 reported in [22]. The exact values obtained very recently by Salas and Sokal
are 1.832 0771(47), 13.936 806(71), and −226.0796(16), respectively†. We observe that the
values of g(2N)

L (t = 0) has no L dependence at least for L � 40, confirming the hyperscaling

† What the authors of [23] actually calculated is V2N ≡ 〈S2N 〉/〈S2〉N(t = 0) from which the cumulant ratios defined
in the present study can be obtained.
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Table 2. Size dependence of various physical quantities at criticality βc = ln(
√

2 + 1)/2 up to
L = 100 for the 2D Ising system.

L U
(4)
L U

(6)
L U

(8)
L g

(4)
L g

(6)
L g

(8)
L

20 1.8324(6) 13.94(1) −226.1(2) 2.227(7) 29.03(18) 933(9)
40 1.8321(6) 13.94(1) −226.1(2) 2.237(8) 29.28(21) 945(10)
60 1.8317(5) 13.93(1) −225.9(1) 2.241(7) 29.37(18) 949(9)
80 1.8318(5) 13.93(1) −226.0(1) 2.240(6) 29.36(16) 948(8)

100 1.8316(6) 13.93(1) −226.0(1) 2.239(7) 29.33(18) 947(9)

Table 3. Size dependence of the various physical quantities at β = 0.217 (the upper part) and
β = 0.220 (the lower part). Note that the g(8)L data for L

ξL
� 5.7 become unreliable owing to huge

error bars and the weaker size dependence for larger L. This appears to be the case even for g(6)L

for L = 36.

L ξL χL g
(4)
L g

(6)
L g

(8)
L × 10−4

8 3.93(0) 59.49(6) 9.86(2) 492.5(1.9) 5.45(3)
12 4.85(1) 94.16(12) 13.59(3) 852(4) 10.8(1)
16 5.299(1) 114.54(5) 17.71(2) 1277(3) 15.77(9)
20 5.488(3) 124.20(7) 21.07(5) 1562(9) 15.5(3)
24 5.573(2) 128.40(5) 23.16(8) 1735(22) 15.5(9)
28 5.605(4) 130.06(11) 24.72(11) 1887(53) 14.6(3.8)
32 5.622(2) 130.87(5) 24.88(14) 2190(286) 13.3(16.9)
36 5.619(19) 130.96(14) 25.64(16) — —
16 7.85(2) 228.8(7) 9.52(5) 452.1(4.6) —
20 8.85(2) 298.1(7) 11.43(5) 625.6(5.1) —
24 9.56(2) 351.8(1.1) 13.44(7) 814.7(8.2) —
30 10.20(3) 407.1(1.1) 16.5(1) 1123(16) —
36 10.56(2) 439.2(1.2) 19.2(1) 1372(27) —
40 10.68(3) 455.2(1.5) 21.4(2) 1501(56) —
50 10.83(3) 467.9(1.3) 23.7(3) 1795(109) —
60 10.89(3) 472.3(1.8) 24.5(4) 1983(148) —
70 10.90(3) 473.0(1.1) 25.8(1.6) — —

and the absence of significant correction to scaling in the model. This is consistent with the
previous Monte Carlo measurement of g(4)R in the scaling regime which showed little variation
in the value with respect to temperature change [16]. We were therefore led to the conclusion
that the thermodynamic values of RCC measured at β = 0.420 may well be regarded as the
critical values.

With respect to the size dependence we observe a similar feature in the 3D Ising model as
in the 2D model. Our data are summerized in table 3. For the β = 0.217 and 0.220 we observe
no size dependence (within the statistical errors) for the ξ and χ beyond L = 32 and 60,
respectively. This roughly corresponds to L

ξL
� 5.5. We expect that this is the case even to the

RCCs, although it was almost impossible to get precise measurements of the thermodynamic
values of g(6)L and g

(8)
L for this value of L

ξL
. For example, for β = 0.217 and L = 32 we

generated about 109 single cluster sweeps, but error bars are larger than the mean value for the
g
(8)
L . The values of g(6)L for L � 32 also seem to be unreliable in view of the generic feature of

the weaker size dependence with larger L.
It thus appears that Monte Carlo computation of the critical RCCs relying on direct

brute-force measurements is prohibitively difficult. In order to overcome the difficulty in
the close neighbourhood of Tc, we make use of a FSS function QA(x(L, t)), defined by the



2680 Jae-Kwon Kim

Table 4. Size dependence of the various physical quantities at β = 0.221 up to L
ξL

� 4.11.

L ξL χL g
(4)
L g

(6)
L g

(8)
L × 10−4

20 10.95(2) 426.7(1.4) 7.6(1) 301(3) 2.67(4)
28 13.93(6) 703.4(4.0) 9.2(1) 423(8) 4.3(1)
36 15.98(6) 944.2(4.7) 11.2(1) 600(10) 6.6(2)
40 16.74(5) 1045.5(4.3) 12.4(1) 710(13) 8.2(2)
48 17.91(3) 1210(3) 14.59(6) 920(8) 10.8(2)
56 18.60(1) 1316(1) 16.74(5) 1116(7) 12.2(2)
64 19.03(2) 1386(2) 18.66(7) 1297(13) 13.4(4)
72 19.28(5) 1426(6) 20.47(29) 1465(57) 13.3(2.6)
80 19.46(2) 1458(2) 21.36(16) 1580(82) —

expression [17, 18]

AL(t) = A(t)QA(x(L, t)) x(L, t) ≡ ξL(t)

L
. (12)

Here AL(t) represents the quantity A measured on a finite lattice of linear size L at a reduced
temperature t , with its corresponding thermodynamic value A(t). What equation (12) states is
that the size dependence of a physical quantity A is given as a function of the scaling variable
x. As a result, the ratio of L to ξL beyond which the thermodynamic limit is reached is
independent of the temperature, which was shown to be approximately 5.5 for the 3D Ising
model.

The FSS technique is especially useful for our purpose, because it enables us to extract
accurate thermodynamic values based on the Monte Carlo measurements with much smaller
lattices. We just outline the single-step FSS extrapolation technique used in this work. For a
detailed explanation, we refer the reader to [17, 18].

(1) For a certain t0, measure AL(t0) and x(L, t0) = ξL(t0)/L for increasing L.
(2) Determine the thermodynamic value at the temperature A(t0) by measuring AL(t0) which

is L independent.
(3) Fit (x(L, t0), AL(t0)/A(t0)) data to a suitable functional form. In this work we used the

ansatz,

Q(x) = 1 + c1x + c2x
2 + c3x

3 + c4x
4 (13)

(4) For any other t , choose a suitable L, measure the value of x(L, t) ≡ ξL
L

and AL(t), and
interpolate Q(x(L, t)).

(5) Extract A(t) by inserting AL(t) and Q(x(L, t)) into equation (12).

The smallest value of L we considered for the FSS method is 20. The boundary condition
imposed for all our simulation is the periodic boundary condition. The numbers of single-
clusters generated by the single-cluster algorithm for given values of L and β are typically of
order 107 and 108, respectively, for the 2D and 3D Ising models.

3. Result and discussion

Our choice of β0 is β0 = 0.220 for the 3D Ising model. We infer from the generic feature of
the size dependence observed for the 3D Ising model that thermodynamic limits of the RCCs
are reached for L

ξL
� 5.5. We thus get g(4)R = 24.5(4) and g

(6)
R = 1983(148) at this β. Fitting
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Q
g 4

β=0.220
β=0.221

Figure 1. Qg(4) calculated for β = 0.220 and 0.221. The two data set collapse unto a single

universal curve, showing numerical evidence for the FSS equation (12) for g(4)R .

the data to the ansatz (13), we get for x � 0.4425(10)

c1 = 2.338 c2 = −15.768 c3 = 19.770 c4 = −5.123

c1 = 3.225 c2 = −25.046 c3 = 42.485 c4 = −23.177

for the scaling function Q(x) of the g(4) and g(6), respectively. Using the scaling function we
calculated the thermodynamic values of the 4- and 6-point RCCs for all the values of L from 36
to 80 in the table 4. The result from each choice of L is in reasonably good agreement: we get
g
(4)
R = 24.3(1), 24.4(4), 24.1(1), 23.9(1), 23.9(1), 24.1(3), and 23.9(2) for each L from the
L = 36 through theL = 80 in the table, whereas for g(6)R we get 1919(11), 1939(20), 1939(21),
1915(10), 1906(17), 1917(70), and 1897(49). The invariance of the thermodynamic RCC with
respect to the choice of L is a numerical proof of the FSS for the variables (see figures 1 and
2). As usual, we extracted the thermodynamic value for several different choices of L for a
given temperature and took the average. Our net results from β = 0.217 to β = 0.2213 are
found in table 6. It is observed that both g

(4)
R and g

(6)
R tend to decrease mildly as β → βc.

In this work we assume the widely accepted correction to scaling exponent [25] θ � 0.5 and
βc = 0.221 654. By fitting our data in table 6 to

g
(2N)
R (t) = g̃

(2N)
R (1 + a2Nt

0.5) (14)

we obtain the values of the critical RCCs which read

g̃
(4)
R = 23.6(2) (15)

g̃
(6)
R = 1879(50). (16)

Our results of g(2N)
L (t = 0) are presented in table 5. It is observed that both U

(4)
L and

ξL
L

have a very mild tendency of decreasing with increasing value of L. All the values of

g
(2N)
L (t = 0) (N = 2, 3, and 4) show remarkable invariance with respect to increasing L at

least for L � 30. In other words, they do not show the effect of correction to scaling observed
in the scaling regime, as is the case in the 2D Ising model. This is a slightly surprising
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x
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g 6

β=0.220
β=0.221

Figure 2. The same as in figure (1) but for Qg(6) .

Table 5. Size dependence of various physical quantities at criticality βc = 0.221 654 up to L = 80
for the 3D Ising system. Here U(4)

L represents the fourth-order cumulant ratio.

L U
(4)
L ξL χL g

(4)
L g

(6)
L g

(8)
L × 10−4

20 1.418(1) 12.80(1) 545.1(5) 5.40(1) 157.4(8) 1.07(1)
30 1.409(1) 19.20(2) 1215(1) 5.37(1) 155.3(7) 1.04(1)
40 1.408(2) 25.65(4) 2148(4) 5.34(2) 153.5(1.1) 1.03(1)
50 1.403(1) 31.98(4) 3313(4) 5.36(2) 154.4(1.0) 1.03(1)
60 1.401(2) 38.33(6) 4742(10) 5.37(2) 155.1(1.1) 1.04(1)
70 1.399(3) 44.69(8) 6418(19) 5.38(2) 155.2(1.2) 1.04(1)
80 1.398(2) 51.13(9) 8351(19) 5.36(2) 154.1(1.3) 1.03(1)

Table 6. Thermodynamic values of the four and six point RCC extracted by the FSS technique for
some temperatures over 0.217 � β � 0.2213. Here the quoted errors are obtained by ignoring
the statistical errors in the estimate of the thermodynamic values at β = 0.220. Crudely speaking,
increases in the estimate of β = 0.220 would lead to a more or less similar amount of increase in
the estimate for other temperatures.

β 0.217 0.219 0.220 0.2206 0.2210 0.2213

g
(4)
R 25.2(2) 24.7(2) 24.5(0) 24.2(2) 24.2(2) 24.1(2)

g
(6)
R 2034(69) 2063(46) 1983(0) 1988(81) 1919(51) 1943(42)

result. There may be a few possible interpretations for the discrepancy. First let us recall that
equation (14) translates into

g
(2N)
L (t = 0) = g̃(2N)(t = 0)(1 + b2NL

−ω) (ω > 0) (17)

and that the coefficient b2N may happen to be very small. The second possibility is that the
currently accepted βc might be slightly underestimated: at the exact criticality it is expected
from the conformal field theory that the value of ξL

L
is a constant for modestly large values of L

irrespective of the presence of the correction, which seems not to be the case at β = 0.221 654.



Critical RCCs in the symmetric phase of the Ising models 2683

Our current result at criticality may be summarized as follows:

g̃(4)(t = 0) = 5.36(2) (18)

g̃(6)(t = 0) = 154.6(1.1) (19)

g̃(8)(t = 0) = 1.035(10) × 104. (20)

Although the estimates, equations (18)–(20), would vary slightly depending on the choice of
the value of the criticality, the near invariance of those values with respect toL almost certainly
rule out any unexpected errors in our Monte Carlo measurements of the 3D Ising model as
well.

It is impossible to apply the FSS method to the g
(8)
R owing to its large error bars.

Nevertheless, it is highly likely that at least g̃(8)R is of order 105 for the following reasons.
(i) From tables 3 and 4, it is evident that the values of g(8)R are significantly larger than 105 up
to L

ξL
� 4 where they can be precisely measured. (ii) We have accurate data at β = 0.2213

(not shown in this work), i.e., g(8)L � 1.13(3) × 105 already for L
ξL

� 2.7. (iii) It is observed

that the ratio of critical RCCs to g
(2N)
L (t = 0) tends to increase with increasing N ; the ratio is

roughly 4.4 and 12.2 for N = 2 and 3, respectively, for the 3D and the value of g(8)L (t = 0) is
already of order 104. (iv) We note that the L dependence of g(8)L (t = 0) is quantitatively the
same as that of the other RCCs, indicating that the correction to scaling for g(8)R (t) is as mild
as that for the other RCCs. All the evidence almost certainly points out that the the value of
the critical g(8)R is much larger than those estimated by other methods. Our crude estimate of
g̃
(8)
R is

g̃
(8)
R � 1.4(3) × 105. (21)

Our estimate of g̃(4)R , equation (15), is in reasonable agreement with other estimates. The
agreement is especially good with the result from high-temperature expansion [8] and the field
theoretic treatment [4,26]. However, the agreement becomes worse asN increases: the results
of g̃(6)R from previous studies are within the range 860 � g̃

(6)
R � 1515. The closest result to

ours, g̃(6)R � 1515, obtained from a previous Monte Carlo method [15] is remarkable because
it is not obtained by the direct measurement of RCC but by the Monte Carlo measurement
of the probability distribution of the order parameter assuming the thermodynamic limit for
L
ξL

� 4. We observe from tables 3 and 4 that the values of g̃(6)R are approximately 1600 under

the condition L
ξL

� 4. Since its critical value would, of course, be something slightly reduced,
we conjecture that the result from the previous Monte Carlo method [15] would agree much
better with our estimate if the same thermodynamic limit as in this work were taken. The
values of g̃(8)R from previous studies range from 2.9 × 104 to 3.5 × 104, which is at least
four times smaller than our estimate. Although it was pointed out [8] that longer series terms
are necessary for a more accurate estimate of higher-order critical RCC with the use of the
high-temperature series expansion method, it remains puzzling why the previous studies based
on different methods other than the Monte Carlo gave rise to results reasonably close to each
other. Nevertheless, in view of limitations of almost all the methods used to study this subject
and in light of the substantial consistency among Monte Carlo studies, it is fair to say that the
issue is still open to further studies.

Our results of the critical RCCs for 2D Ising model obtained assuming a negligibly small
correction to scaling read

g̃
(4)
R = 14.7(2) (22)

g̃
(6)
R = 850(25) (23)

g̃
(8)
R = 8.9(5) × 104. (24)
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Our estimate of g̃(4)R is in excellent agreement with the results reported in [7,8,10,16,26]. The
estimate of g̃(6)R and g̃

(8)
R agree reasonably well with other estimates [6, 10, 24] that read

g̃
(6)
R � 794 g̃

(8)
R � 8.2(2) × 104. (25)

Our results at criticality are summerized as

g̃(4)(t = 0) = 2.239(7) (26)

g̃(6)(t = 0) = 29.34(20) (27)

g̃(8)(t = 0) = 947(10). (28)

These agree perfectly well within the statistical errors with the exact results calculated by Salas
and Sokal [23], which are 2.236 6587(57), 29.254 57(15), and 942.6095(72), respectively.

Acknowledgments

The author would like to thank Maxim Tsypin for many communications, Jesus Salas for
providing him with their exact results of the 2D Ising model at criticality, and Byung Chan Eu
for his critical reading of the manuscript.

References

[1] Watson P G 1969 J. Phys. C: Solid State Phys. 2 1883
[2] Bender C M et al 1980 Phys. Rev. Lett. 45 501

Bender C M and Boettcher S 1993 Phys. Rev. D 48 4919
[3] Sokolov A I 1996 Fiz. Tverd. Tela 38 640

Sokolo A I, Ul’kov V A and Orlov E V 1997 Phys. Lett. A 227 255
[4] Guida R and Zinn-Justin J 1997 Nucl. Phys. B 489 626
[5] Campostrini M, Pelissetto A, Rossi P and Vicari E 1996 Nucl. Phys. B 459 207

(Campostrini M, Pelissetto A, Rossi P and Vicari E 1999 Preprint cond-mat/9905078)
[6] Sokolov A I and Orlov E V 1998 Phys. Rev. B 58 2395
[7] Jug G and Shalaev B N 1999 J. Phys. A: Math. Gen. 32 7249
[8] Butera P and Comi M 1996 Phys. Rev. B 54 15 828

Butera P and Comi M 1998 Phys. Rev. B 58 11 552
[9] Reisz T 1995 Nucl. Phys. B 450 569

[10] Zinn S Y, Lai S N and Fisher M E 1996 Phys. Rev. E 54 1176
[11] Bagnuls C and Bervillier C 1990 Phys. Rev. B 41 402
[12] Berges J, Tetradis N and Wetterich C 1996 Phys. Rev. Lett. 77 873
[13] Morris T 1997 Nucl. Phys. B 495 4777
[14] Wheater J F 1984 Phys. Lett. B 136 402
[15] Tsypin M M 1994 Phys. Rev. Lett. 73 2015
[16] Kim J-K and Patrascioiu A 1993 Phys. Rev. D 47 2588
[17] Kim J-K 1994 Phys. Rev. D 50 4663
[18] Kim J-K, de Souza A J F and Landau D P 1996 Phys. Rev. E 54 2291
[19] Wolff U 1989 Phys. Rev. Lett. 62 361

Swendsen R H and Wang J-S 1987 Phys. Rev. Lett. 58 86
[20] Kim J-K and Landau D P 1997 Nucl. Phys. B (Proc. Suppl.) 53 706
[21] Baker G A Jr and Kawashima N 199 Phys. Rev. Lett. 75 994

Kim J-K 1996 Phys. Rev. Lett. 76 2402
[22] Mon K K 1997 Phys. Rev. B 55 38
[23] Salas J and Sokal A D 2000 J. Stat. Phys. 98 551

(Salas J and Sokal A D 1999 Preprint cond-mat/9904038)
[24] Pelissetto A and Vicari E 1998 Nucl. Phys. B 522 [FS] 605
[25] See, for example, Guida R and Zinn-Justin J 1998 J. Phys. A: Math. Gen. 31 8103 and references therein
[26] Pelissetto A and Vicari E 1998 Nucl. Phys. B 519 626


